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Electron transport through a disordered two-dimensional array of potentials has been investigated. 

The resistivity was calculated according to the Faber–Ziman diffraction model, suitably modified for 

a two-dimensional electron gas. The structure factor is obtained by means of numerical simulations. The 

pseudopotentials are assumed to be Shaw potentials with appropriate screening. The resistivities of disor-

dered monolayers of alkali metals have been calculated in this model using parameters that allowed us to 

explain the experimental data for bulk materials. 
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1. Introduction 

Rapid development of nanoelectronics that has been recently observed generates 

the need for a theoretical description of electron transport properties of nanoscale 

systems. Such systems have at least one size small enough that the electron wave 

function essentially differs from that in a bulk material. This, in turn, influences 

physical properties of the system. 

In this work, we consider a disordered monolayer metallic film. Such films can 

now be obtained by the MBE technique [1, 2]. We assume that their transport proper-

ties, electrical resistivity in particular, can be described by the behaviour of a two 

-dimensional electron gas placed in a superposition of a static electric field and a dis-

ordered array of ionic potentials. The scattering of conduction electrons is described 

within the diffraction model [3]. The calculated resistivities of monolayers of alkali 

metals will be compared with available experimental data for corresponding bulk 

materials. 

_________  
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2. Theoretical model 

The electrical resistivity ρ of a disordered array of ions can be calculated in 

a Boltzmann-type approximation using the formula 
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where m and e are the electron mass and charge, respectively, n is electron concentra-

tion, and τtr is the transport relaxation time. In a two-dimensional picture, n is of 

course the area density, i.e. the density of carriers per unit area. Ziman’s formula for 

τtr [3] should also be appropriately modified [4]: 
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where νF is the Fermi velocity and A is the area of the system. Here, /d dσ ϕ  is the 

differential cross section for two dimensions [4]: 
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where kF is the Fermi wave vector in the xy plane, N is the total number of atoms in 

the system, S(q) is a two-dimensional structure factor, ua(q) is a two-dimensional Fou-

rier transform of the atomic potential ua(r), and 
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The structure factor S(q) defined as 
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has been calculated by means of numerical simulations. We placed circles of a given 

diameter σ in a rectangle of a given size at random, so that they filled up the whole 

area but did not overlap each other, after which we computed the sum in Eq. (5). This 

is equivalent to using the random closely packed hard sphere model. The rectangles 

used in our calculations contained at least a thousand of these artificial atoms. We 

took the average over an ensemble of at least a thousand random configurations. 

To calculate the differential cross-section, we also need an analytical form of 

the scattering potential. We assumed the Shaw pseudopotential, modified by screen-

ing [6]: 
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where Rc is the core radius, λ is the screening parameter, and Z=e2/(4πε0) in SI units. 

Such a form gave good agreement with the experimental results for bulk alkali metals 

in our previous work [6]. 

Unfortunately, the Fourier transform of this potential in two dimensions 
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cannot be expressed by elementary functions. We converted it into a real integral 
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and calculated it numerically. 

3. Results of calculations 

We calculated the structure factors S(q) given by Eq. (5) for five alkali metals: Li, 

Na, K, Rb, and Cs using atomic diameters taken from [7], which reproduced well the 

experimental structure factors for bulk samples. These values are given in Table 1. 

The structure factors for all five elements are shown in Fig. 1. 

Table 1. Input parameters for numerical calculations and the resulting resistivities 

Element σ [10–10 m] λ [1010 m] Rc [10–10 m] ρm [Ω] ρb [μΩ·cm] ρexp [μΩ·cm] 

Li 2.70 1.36 0.66 55.4 1.68 25 

Na 3.28 1.23 1.25 19.7 0.73 9.6 

K 4.07 1.11 1.53 22.2 1.01 13 

Ru 4.30 1.08 1.47 31.8 1.57 22 

Cs 4.73 1.03 1.36 57.0 3.04 36 

 

The pseudopotential depends on two parameters: Rc and λ. The screening parame-

ter λ is closely related to the Fermi wave vector kF [8]: 
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where a0 is the Bohr radius. The core radii Rc for alkali metals were estimated in [6] 

from fitting the experimental resistivities of liquid metals. We assume that they are 
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the same the two-dimensional systems. The values of these parameters are also given 

in Table 1. 

 

Fig. 1. Structure factors of alkali metals obtained from numerical simulations 

The resistivities of the monolayer films of the considered metals, ρm, have been 

calculated by numerical integration and are shown in Table 1. It is interesting to com-

pare the obtained values of ρm with the resistivities of the corresponding bulk materi-

als, ρb. These quantities are measured in different units, so that when compare them 

we have to extrapolate our results to bulk values simply by multiplying them by the 

thickness of the layer, i. e. the atomic diameter. These results are also presented in 

Table 1, together with the experimental values for liquid metals. 

4. Conclusions 

We calculated the electrical resistivities of monatomic metallic layers, considering 

the transport of a two-dimensional electron gas through a disordered array of screened 

Shaw potentials. The resistivities obtained for alkali metals, after suitable extrapola-

tion, are one order of magnitude smaller than the corresponding values for liquid met-

als. They are substantially lower because the electron in a two-dimensional system 
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can be scattered only in a plane, whereas in a bulk material it has an additional degree 

of freedom. This means that these results can be viewed as reasonable, and could be 

confirmed by a suitable experiment. 
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